One-shot vs. competitions phonotactics in modeling constraint cumulativity

Marisabel (Isa) Cabrera UCLA

AMP 2024 1-3 November Rutgers University

- Model variable phonological patterns with log-linear (MaxEnt) models: output of grammar is a probability distribution over candidates (Goldwater & Johnson 2003; Hayes & Wilson 2008).
- Both phonotactics and alternations show variable patterns.

English phonotactics	Tagalog alternations (Zuraw 2010)				
hæ mp ı,	/ma ŋ-b igáj/	[ma- m igáj]			
εntı,	/ma ŋ-s úlat/	[mà- n ulát]			
ɪ ŋg lɪ∫	/ma-pa ŋ-k amkám/	[ma-pa- ŋ amkám]			
ɪnp∧ t	/pa ŋ-p 0?ók/	[pa m-p o?ók]			
kœ md ən	/pa ŋ-s úlat/	[pa n-s úlat]			

• In phonotactics, model assigns a *single* probability distribution over a (big) list of forms.

 In phonotactics, model assigns a single probability distribution over a (big) list of forms.

• We can also model phonotactics as a **binary choice** between a structural candidate (observed form) and null candidate ⊙.

inputs	cands.	freq.	Agree[pl] w1	MParse W ₂	probability	
hœ mp վ	hœ mp վ	1	0		1 / Z 1	7
	Ο	0		1	e ^{-w2} / Z ₁	۲ ۲ [
ıŋg lɪ∫	ιŋg ∣ɪ∫	1	0		1 / Z ₂	7
	Ο	0		1	e ^{-w2} / Z ₂	ل ے ا
kæ md ən	kæ md ən	0	1		e ^{-w1} / Z ₃	7
	Ο	1		1	e ^{-w2} / Z ₃	ل ے ا

McCarthy & Wolf 2005; Kawahara 2021; Hayes 2022; Breiss & Albright 2022

• We can also model phonotactics as a **binary choice** between a structural candidate (observed form) and null candidate ⊙.

inputs	cands.	freq.	Agree[pl] w1	MParse W2	probability	
hœ mp ų	hœ mp վ	1	0		1 / Z ₁	$\left \int \Sigma \right = 1$
	Ο	0		1	e ^{-w2} / Z ₁	$\int \int_{c} \int_$
ıŋg lɪ∫	ιηg ∣ɪ∫	1	0		1 / Z ₂	$\int \sum = 1$
	Ο	0		1	e ^{-w2} / Z ₂	$\int \int \frac{d}{c} dc$
kæ md ən	kæ md ən	0	1		e ^{-w1} / Z ₃	$\left \int \Sigma \right = 1$
	Ο	1		1	e ^{-w2} / Z ₃	$\int_{c} \frac{\sum_{c} - 1}{c}$

McCarthy & Wolf 2005; Kawahara 2021; Hayes 2022; Breiss & Albright 2022

 We can also model phonotactics as a binary choice between a structural candidate (observed form) and null candidate O.

• Multiple competitions models bring phonotactics closer to *alternations* - assign multiple probability distributions.

- Binary competition is required to derive wug-shaped curves MaxEnt's "quantitative signature" (Kawahara 2021, Hayes 2022).
 - Frequency pattern widely found in quantitative studies of variable patterns.

One-shot vs. multiple competitions phonotactics raises some important questions...

- Can we model **frequencies** with the multiple competitions model?
- How would phonotactic learning proceed when "say nothing" ⊙ is **unobservable**?
- How do the models differ in predictions?
- Are their predictions empirically attested?

TODAY: models make different empirical predictions regarding *cumulative phonotactic effects*...

- **One-shot** models: additional violations take a **decreasing hit** on probability relative to previous violations.
- Multiple competitions models: additional violations may take a greater hit (under certain weighing conditions).

Roadmap

- 2 Formal properties of one-shot vs. multiple competitions phonotactics
- 3
- Learning concave-up and concave-down patterns
 - sanity check
 - can the models predict concave-down patterns in absence of such pattern in training?

Roadmap

Background on cumulativity in phonology

- 2 Formal properties of one-shot vs. multiple competitions phonotactics
- 3 Learning concave-up and concave-down patterns
 - sanity check
 - can the models predict concave-down patterns in absence of such pattern in training?

4 Discussion

- When 2+ constraint violations together have an additive effect on the phonology of a language.
- A form with n+1 violations is somehow worse than a form with n violations (when $n \ge 1$).
- Additive "worsening" effect evidenced in:
 - 1 lexical frequencies (Albright 2008; Shih 2017; Yang et al. 2018)
 - 2 acceptability judgments (Pizzo 2015; Breiss 2020; Breiss & Albright 2022)
 - 3 repairs (alternations) (Farris-Trimble 2008; Green & Davis 2014; Shih 2017; Smith & Pater 2020; Kim 2022)

1) lexical frequencies: Albright (2008)

- Lakhota fricatives, ejectives, aspirates, and consonant clusters are marked structures they're quite uncommon.
- But, words with two of these are way more uncommon...
 - Bisyllabic words: 32% have fricative as C_1 and 18% have fricative as $C_2.$
 - Only 1% have two fricatives.
 - But we expect 6% from joint probability (0.32 x 0.18)

- 2 acceptability judgments: Breiss (2020)
- Familiarized participants with exceptionless backness and nasal harmony (potu, nime)
- Asked to rate zero-, singly-, and doubly-violating words.
- **Result:** speakers assume cumulativity even when there's no evidence for it in the input.

2 acceptability judgments: Breiss (2020)

• Results for binary decision tasks.

2 acceptability judgments: Breiss (2020)

• Results for binary decision tasks.

18

- Cumulativity not predicted by all theories of phonology.
 - Strict-ranking OT

	Constraint A	Constraint B	Constraint C
Candidate A	*!		
🖙 Candidate B		*	*

• Harmonic Grammar (Legendre et al. 1990)

	Constraint A w = 3	Constraint B w = 2	Constraint C w = 2	Н
🕶 Candidate A	*			3
Candidate B		*	*	4

The one-shot model

- Assigns a *single* probability distribution over all inputs.
- **Counting** cumulativity: multiple violations of the same constraint (vs. ganging cumulativity)
- How do subsequent violations affect predicted probability?

inputs	mark W _m	Н	probability
C ₀	0	0	1 / Z
C ₁	1	-w	e ^{-w} / Z
C ₂	2	-2w	e ^{-2w} / Z
C ₃	3	-3w	e ^{-3w} / Z

$$\frac{P(c1)}{P(c2)} = \frac{e^{-w}}{e^{-2w}} = \frac{1}{e^{-w}}$$

Each additional violation decreases probability by **e**^w.

The one-shot model

The one-shot model

- All curves are concave-up
- Later violations cause smaller dips in probability.
- Increasingly concave- up as **w**_m increases.

• Assigns *multiple* probability distributions, one for each input.

1) Type of curve ("concavity") is a function of weight of **MParse**.

 Steepness of curve (strength of concavity) is a function of weight of markedness.

 Steepness of curve (strength of concavity) is a function of weight of markedness.

Installs a "threshold of markedness" (inflection point)

Quickly prefer structural candidate above threshold, and ⊙ below threshold.

How guick: weight of markedness

(property 2)

Learning

- Simulated different kinds of concave-up and concave-down curves to test model learning.
- I'll focus on these:

Learning

• As expected, one-shot only fits concave-up curves.

Learning

• Multiple competitions can fit **both**.

Summary

- "One-shot" vs. "multiple competitions" MaxEnt models differ in the kinds of cumulative phonotactic effects they predict.
 - **One-shot**: later violations take a *decreasing* hit on probability.
 - **Multiple competitions**: later violations may take a **greater** hit on probability than earlier violations (under some weighing conditions).
- Competitions model only learns concave-down patterns when explicitly trained on them.
- Are concave-down patterns empirically attested?
- How is the weight of MParse learned when the null "say nothing" candidate is unobservable?

Learning under competitions model

• Concave-up learning set-up.

inputs	cands	obs. freq.	mark W _m	MParse w _{mp}	pred. prob
C ₀	C ₀	0.87	0		?
	\odot	0.13		1	
C1	C ₁	0.123	1		?
	O	0.877		1	
C ₂	C ₂	0.0055	2		?
	\odot	0.9945		1	
C ₃	C ₃	0.0015	3		?
	\odot	0.9985		1	

Assumed structural candidates are in the "same distribution"

Assumed **1-p** frequency for ⊙

Learning under competitions model

 Not possible with concave-down patterns that competitions models predict.

inputs	cands	obs. freq.	mark W _m	MParse w _{mp}	pred. prob	
C ₀	C ₀	0.983	0		?	
	0	0.017		1		
C1	Cl	0.93	1		?	0 1 2 3
	0	0.07		1		Can't assume
C ₂	C ₂	0.599	2		?	structural
	0	0.401		1		candidates are in same
C ₃	C ₃	0.131	3		?	distribution.
	0	0.869		1		

• Proposal: learning with multiple competitions and unrestricted GEN.

inputs	cands	obs. freq.	mark W _m	MP arse W _{mp}	
black	black	1			
	\odot	0		1	
blick	blick	0			
	\odot	1		1	
bnick	bnick	0			•••
	O	1		1	

• Testable prediction: concave-down patterns are learnable.

• **Proposal:** one-shot and competitions as models for different tasks.

phonotactic learning (Hayes & Wilson 2008) competitions

model acceptability judgments

• **Proposal:** one-shot and competitions as models for different tasks.

phonotactic learning (Hayes & Wilson 2008) competitions

model acceptability judgments

• **Proposal:** one-shot and competitions as models for different tasks.

phonotactic learning (Hayes & Wilson 2008) competitions

model acceptability judgments

• Learning and judgments are different tasks and grammar structure can reflect those differences.

Concavity vs. linearity

- Literature often investigates the *linearity* of cumulativity.
- Linearity: **observed** vs. **expected** (expected = joint prob. of candidates with single violations)
- Lakhota fricatives are superlinear (Albright 2008)
 - Expected prob. of doubly-violating: 32% x 18% = 6%
 - Observed prob. = 1%
- Concavity and linearity are different...

Concavity vs. linearity

- English onset clusters are concave-up but superlinear.
- Superlinear: observed < expected
- Concavity aligns with one-shot vs. competitions differences.
- Breiss & Albright (2022) use the competitions model to predict superlinearity.

Closing

- Different candidate competitions structures lead to different and testable empirical predictions.
 - One-shot models only predict concave-up patterns.
 - Competitions can predict concave-down patterns.

- Consequences for modeling of phonotactics vs. alternations: alternations also involves multiple competitions.
- Extensions to ganging cumulativity: violations of different constraints.
- Extensions to Stochastic OT and Noisy HG (Boersma & Hayes 2001; Boersma & Pater 2016).
- Cumulativity tells us a lot about how grammars should be structured, probabilistic or not.

thank you!

Ö Ö Ö

Huge thanks to Claire Moore-Cantwell, Tim Hunter, Bruce Hayes, Canaan Breiss, Megha Sundara, and members of the UCLA Phonology Seminar and UCLA Comp/PsychoLing Seminar.

41

References

Albright, A. 2008. Cumulative violations and complexity thresholds. Ms., MIT.

Boersma, P. & B. Hayes. 2001. Empirical tests of the gradual learning algorithm. *LI 32(1)*. Boersma, P. & J. Pater. 2016. Convergence properties of a gradual learning algorithm for Harmonic Grammar.

- Breiss, C. 2020. Constraint cumulativity in phonotactics: evidence from artificial grammar learning studies. *Phonology 37*.
- Breiss, C & A. Albright. 2022. Cumulative markedness effects and (non-)linearity in phonotactics. *Glossa* 7(1).
- Farris-Trimble, A.W. 2008. Cumulative faithfulness effects. Ph.D. Dissertation, University of Indiana.
- Goldwater, S. & M. Johnson. 2003. Learning OT constraint rankings using maximum entropy models. Proceedings of the Workshop on Variation within Optimality Theory.
- Hayes, B. 2022. Deriving the wug-shaped curve: A criterion for assessing formal theories of linguistic variation. *Annual Rev. of Linguistics* 8(1).
- Hayes, B. & C. Wilson. 2008. A Maximum Entropy model for phonotactics and phonotactic learning. *LI* 39(3).
- Legendre, G., et al. 1990. Harmonic Grammar: a formal multi-level connectionist theory of linguistic well-formedness.
- Pater, J. 2009. Weighted constraints in generative linguistics. *Cognitive Science* 33. Pizzo, J. 2015. Investigating properties of phonotactic knowledge through web-based experimentation. Ph.D. Dissertation, University of Massachusetts Amherst.
- Smith, B. & J. Pater. 2020. French schwa and gradient cumulativity. *Glossa 5*(1). Wolf, M. & J.H. McCarthy. 2008. Less than zero: correspondence and the null output.

42